Tag Archives: Reactive oxygen species

NSAIDs and FQs Damage Mitochondria, Increase Oxidative Stress, and Cause Cell Death

As I noted in the post, Why NSAIDs Suck for Floxies (and Probably Everyone Else Too), NSAIDs often exacerbate fluoroquinolone toxicity symptoms, and there are several mechanisms through which NSAIDs can interact with fluoroquinolones. The results of a recent article published in the Journal of Molecular and Cellular Cardiology by researchers at UC Davis, Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells, help to further explain why NSAIDs trigger fluoroquinolone toxicity symptoms, and why they are a horrible combination.

NSAIDs and Fluoroquinolones Damage Mitochondria

The study showed that NSAIDs “Attack mitochondria, reducing the cardiac cell’s ability to produce energy” (source).

Likewise, fluoroquinolones have been shown to attack mitochondria. The studies, Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells and Delayed cytotoxicity and cleavage of mitochondrial DNA in ciprofloxacin-treated mammalian cells show that fluoroquinolones damage mitochondria, deplete mitochondrial DNA, and cause oxidative stress.  Also, the FDA admits that mitochondrial damage is the likely mechanism through which fluoroquinolones cause peripheral neuropathy.

Healthy mitochondria are vital for cellular energy and health. Unhealthy mitochondria have been linked to many diseases, including M.S., fibromyalgia, M.E./C.F.S., P.O.T.S., diabetes, cancer, aging, and more. Do NSAIDs and fluoroquinolones increase one’s chances of getting those diseases that are related to mitochondrial dysfunction? It’s certainly reasonable to think so – via the mitochondrial damage link – but studies have not shown a direct connection (mainly because neither have been researched).

NSAIDs and Fluoroquinolones Increase Reactive Oxygen Species (ROS)

NSAIDs also “Cause the production of reactive oxygen species, which stresses heart cells and is associated with many diseases, including heart disease” (source).

Fluoroquinolones have also been shown to increase production of reactive oxygen species (ROS – aka oxidative stress). The article, Oxidative Stress Induced by Fluoroquinolones on Treatment for Complicated Urinary Tract Infections in Indian Patients notes that, “Several in vitro and in vivo study using animals revealed that fluoroquinolones induced oxidative stress by producing reactive oxygen species (ROS)” and that in vivo human studies show that, “ciprofloxacin and levofloxacin induce more reactive oxygen species that lead to cell damage than gatifloxacin.

ROS are described as follows:

Without oxygen, we could not exist. However, in the process of generating energy by “burning” nutrients with oxygen, certain “rogue” oxygen molecules are created as inevitable byproducts. Known as free radicals and reactive oxygen species, these unstable, highly reactive molecules play a role in cell signaling and other beneficial processes when they exist in benign concentrations.  But when their numbers climb, as may occur as a result of aging and other conditions, they may wreak havoc with other molecules with which they come into contact, such as DNA, proteins, and lipids. As such, these “pro-oxidant” molecules become especially toxic.

In fact, a prevailing theory of disease and aging states that the gradual accumulation of pro-oxidant molecules, and the harm they incur, is responsible for many of the adverse changes that eventually cause various diseases. These include cancer (possibly triggered by free radical-induced damage to cellular DNA) and inflammatory and degenerative diseases such as Alzheimer’s, arthritis, atherosclerosis, and diabetes. While scientists have not yet reached consensus on the topic, accumulated evidence overwhelmingly identifies increased oxidative stress with age as a source of damage to cellular structure and function. (source)

To drastically over-simplify things, ROS are the opposite of antioxidants. If you’ve ever read about the benefits of antioxidants like vitamin C or glutathione, ROS have the opposite effects. In excess, ROS are harmful and damaging to cells.

NSAIDs and Fluoroquinolones Cause Cell Death

NSAIDs were found to “Impair the cardiac cell’s proteasome, the mechanism for degrading harmful proteins. This leads to toxic buildup and eventually to the death of cardiac cells” (source).

fluoroquinolone-lawsuit-banner-trulaw

Fluoroquinolones have also been found to cause cell death (apoptosis). This has been shown in many articles that note that fluoroquinolones are useful as chemotherapeutic agents specifically because they kill cells. Unfortunately, they don’t just kill cancer cells, they also kill healthy cells. The following articles note that fluoroquinolones are chemotherapeutic drugs that damage and kill cells:

  1. In an article published in the journal Urology, it was noted that, “Ciprofloxacin and ofloxacin exhibit significant time and dose-dependent cytotoxicity against transitional carcinoma cells.” That’s great – excellent, actually – if you happen to have carcinoma cells in your bladder. But if you just happen to have a bladder infection, chemo drugs that exhibit toxicity toward human cells – cancer or otherwise – are inappropriate for use (1).
  2. The mechanism for action for fluoroquinolones is that they are topoisomerase interrupters (2).Topoisomerases are enzymes that are necessary for DNA replication and reproduction. All of the other drugs that are topoisomerase interrupters are approved only for use as chemotherapeutic agents. It is only appropriate to use drugs that disrupt the process of DNA replication and reproduction when someone’s cells are already so messed up that they have cancer.
  3. Fluoroquinolones have been found to interfere with the DNA replication process for human mitochondria (3, 4, 5). Mitochondria are vital parts of our cells, (cellular energy is produced in our mitochondria), and disrupting the process through which mitochondrial DNA replicates causes cellular destruction, oxidative stress and disease.
  4. Fluoroquinolones have been shown to be genotoxic and to lead to chromosomal abnormalities in immune system cells (6).
  5. Fluoroquinolones disrupt cellular tubulin assembly (7). All of the other drugs that disrupt tubulin assembly are chemotherapeutic drugs.
  6. Fluoroquinolones disrupt enzymes, including CYP1A2 enzymes, which are necessary for detoxification.

Avoid NSAIDs and Fluoroquinolones

Dr. Aldrin V. Gomes, one of the authors of Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells, “advised caution when using NSAIDs either topically or orally” (source). Likewise, caution is warranted when using fluoroquinolones, as one can gather from reading any of the stories of pain and suffering caused by fluoroquinolones. Personally, I will do everything in my power to avoid both NSAIDs and fluoroquinolones for the rest of my life. Mitochondrial destruction, oxidative stress, and cell death aren’t things I want.

flu tox get help you need banner click lisa

Fluoroquinolone Induced Gene Upregulation and ROS

The article, “The Fluoroquinolone Levofloxacin Triggers the Transcriptional Activation of Iron Transport Genes That Contribute to Cell Death in Streptococcus pneumonia” is difficult.  It’s not light reading.  I wish it was.  I wish the articles that have information about how fluoroquinolones affect cells were easy to understand and to read.  I wish that we had easy, simple answers about how fluoroquinolones lead to the myriad of adverse events that are listed on the FDA warning labels for them.  I wish that more was known about how fluoroquinolones work.  I wish that a list of definitions wasn’t necessary at the beginning of this blog post.  But this stuff is hard, and a list of definitions is necessary, so, hereyago (some definitions paraphrased from the Wikipedia article because it’s easiest and I’m not a biochemist – for more info, go to the wiki page, or elsewhere):

Reactive Oxygen Species (ROS):  “Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen. Examples include oxygen ions and peroxides. ROS are formed as a natural byproduct of the normal metabolism of oxygen and have important roles in cell signaling and homeostasis.  However, during times of environmental stress (e.g., UV or heat exposure), ROS levels can increase dramatically. This may result in significant damage to cell structures. Cumulatively, this is known as oxidative stress. ROS are also generated by exogenous sources such as ionizing radiation.”  ROS can be incredibly nasty.  They can lead to cellular damage, including DNA damage, and are related to every chronic disease there is.  They’re also related to ageing.  As damage from ROS (also called oxidative stress and free radicals) accumulates, ageing and the diseases of old age occur.  Interestingly though, ROS are not all bad.  They serve as signaling mechanisms within cells and play a large role in turning genes on and off (epigenetics).  They need to be in balance.  If they’re not in balance, a whole lot of things can go wrong.  They’re kind of like tequila.  A shot of tequila mixed with lime juice and other goodies, is excellent in a margarita.  But if you drink the whole bottle, and then mix it with some whiskey, it’s really bad and destructive.  The ways that ROS work within cells is not linear and difficult to study.  Not a whole lot is known about ROS or how they affect human health.  The article, “Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production” has a really nice over-view of various ROS and their effects.  It’s easier to think of them as different  alcoholic drinks though.  Some are beer – pretty benign unless you have a ridiculous amount of them.  Others are potent – more like Everclear – and they can do a lot of damage to you quickly.

Fenton Reaction:  “Iron(II) is oxidized by hydrogen peroxide to iron(III), forming a hydroxyl radical and a hydroxide ion in the process. Iron(III) is then reduced back to iron(II) by another molecule of hydrogen peroxide, forming a hydroperoxyl radical and a proton. The net effect is a disproportionation of hydrogen peroxide to create two different oxygen-radical species, with water (H+ + OH–) as a byproduct.”  Basically, iron can “donate or accept free electrons via intracellular reactions and help in creating free radicals.”  Free radicals are ROS.  Some of the nastiest ROS are created in the Fenton Reaction – hydroxyl radicals and hydroperoxyl radicals.  (“Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production” has good info on both of those.)

Type II topoisomerases, gyrase and topoisomerase IV:  “Type II topoisomerases maintain DNA topology and solve the topological problems associated with DNA replication, transcription, and recombination (20). Gyrase introduces negative supercoils into DNA (21), whereas topo IV relaxes DNA and participates in chromosome partitioning (22). Chromosomal topology in Escherichia coli is maintained homeostatically by the opposing activities of topoisomerases that relax DNA (topo I and topo IV) and by gyrase.” (from “The Fluoroquinolone Levofloxacin Triggers the Transcriptional Activation of Iron Transport Genes That Contribute to Cell Death in Streptococcus pneumonia”)

fluoroquinolone-lawsuit-banner-trulaw

You got all that?  Even the definitions are difficult.  Now onto some highlights of the article, “The Fluoroquinolone Levofloxacin Triggers the Transcriptional Activation of Iron Transport Genes That Contribute to Cell Death in Streptococcus pneumonia.”

Basically, the researchers found that levofloxacin upregulated genes that are involved in iron uptake and triggered the Fenton reaction in certain bacteria.  The increase in reactive oxygen species that ensued contributed to the lethality of the levofloxacin.

There are a few interesting things that should be noted about this.  First, levofloxacin can upregulate genes.  How consequential is this?  Can eukaryotic genes be upregulated, or can only bacterial genes be upregulated?  What about mitochondrial genes?  What does upregulation of bacterial, mitochondrial and even eukaryotic nuclear genes do to the person who has taken levofloxacin?

Some interesting research is being conducted about the relationship between the microbiome and genetic, heritable traits.  This National Geographic article, “The Most Heritable Gut Bacterium is… Wait, What is That?” notes some of the relationships that are being explored.  Our genes can affect our microbiome, our microbiome can affect our genes, can the genes of our microbiome affect…. US?  Where does the microbiome stop and where do we begin?  Those are all questions that have not yet been answered.  Unfortunately, fluoroquinolones, like levofloxacin, are thoroughly messing up our microbiomes and even causing the upregulation/expression of certain genes.

The second thing of note from the article is that the upregulated genes caused the activation of the Fenton reaction in the bacterial cells.  Again, how does this affect our microbiome?  How does it affect US?  Hydroxyl radicals and superoxide anions are nasty ROS that damage everything in their wake.  What happens to the health of the microbiome, and the host (the person) when their gut is suddenly full of toxic ROS?  Leaky gut syndrome?  Autoimmune reactions?  The multi-symptom, chronic illness that is fluoroquinolone toxicity syndrome?

There is quite a bit of evidence that fluoroquinolones do to mitochondria what they do to bacteria – disrupt the process of DNA replication and reproduction and lead to destruction and cell death.  I think that mitochondrial destruction has a lot to do with fluoroquinolone toxicity.  However, I don’t think that the role of disruption of our microbiome and destruction of our gut bacteria should be overlooked.  The signaling that goes on within our microbiome, and between “us” and our microbiome, is critically important and poorly understood.  Triggering bacterial DNA destruction and death, upregulation of genes and the Fenton reaction – which leads to production of highly destructive ROS, is a very, very, very bad idea – even if it just stays within the microbiome.

The conclusion of “The Fluoroquinolone Levofloxacin Triggers the Transcriptional Activation of Iron Transport Genes That Contribute to Cell Death in Streptococcus pneumonia” is that:

“In conclusion, we have shown for the first time that fatDCEB transcription is regulated by the supercoiling level. The primary effect of the interaction of LVX-topo IV is the upregulation of the operon by local increase in DNA supercoiling. This upregulation would increase the intracellular level of iron, which activates the Fenton reaction, increasing the concentration of hydroxyl radicals. These effects were observed before the inhibition of protein synthesis mediated by LVX. All these effects, together with the DNA damage caused by the inhibition of topo IV, would account for LVX lethality. The possibility to increase FQs’ efficacy by elevating the levels of intracellular ferrous iron remains open.”

Because, apparently, seeing the big picture of the symbiotic relationship between the microbiome and the rest of the organism (the person), isn’t the goal.  The goal is to kill bacteria.  It’s ridiculously short sighted.  Sigh.

Because we’re in Floxieville, there has to be a paradox.  Supplementing iron helped me more than just about anything else.  Iron is one of the few supplements that made me feel markedly better immediately after taking it.  Other Floxies have reported that their ferritin levels are low post-flox.  The role of the Fenton reaction in fluoroquinolone toxicity would lead one to think that iron should be the last thing that a Floxie might need or want.  It helped me though.  I had more energy and even my tendons felt better when I started supplementing iron.  I don’t know if this has something to do with the kind of iron in my supplement/body – FE3 or FE2 – or if the iron had been converted to other chemical compounds and I needed to replace it, or what.  I do know that, as I said in the beginning of this post, this stuff is hard.

The Fluoroquinolone Levofloxacin Triggers the Transcriptional Activation of Iron Transport Genes That Contribute to Cell Death in Streptococcus pneumonia provides a good description of how fluoroquinolones work:

“The killing effect of FQs has been related to the resolution of reaction intermediates of DNA-FQ-topoisomerase complexes, which generates irreparable double-stranded DNA breaks (31). This could occur in E. coli by two pathways, one dependent on protein synthesis and the other independent of it. It has been shown that hydroxyl radical action contributes to FQ-mediated cell death occurring via a protein-dependent pathway (32). This result agrees with a recent proposal suggesting that, following gyrase poisoning, hydroxyl radical formation utilizing internal iron and the Fenton reaction (33) is generated and contributes to cell killing by FQs (34) as well as by other bactericidal antibiotics (35, 36). In this mechanism, proposed for Enterobacteriaceae (35, 37), the primary drug interactions stimulate oxidation of NADH via the electron transport chain that is dependent on the tricarboxylic acid cycle. Hyperactivation of the electron transport chain stimulates superoxide formation. Superoxide destabilizes the iron-sulfur clusters of enzymes, making Fe2+ available for oxidation by the Fenton reaction. The Fenton reaction leads to the formation of hydroxyl radicals that would damage DNA, proteins, and lipids (38), which results in cell death. Instead of a generalized oxidative damage, a recent study supports that the main action of hydroxyl radicals is the oxidation of guanine (to 8-oxo-guanine) of the nucleotide pool. The incomplete repair of closely spaced 8-oxo-deoxyguanosine lesions caused lethal double-strand DNA breaks, which would underlie much of the cell death caused by beta-lactams and FQs (39). However, recent investigations have questioned the role of hydroxyl radicals and intracellular iron levels in antibiotic-mediated lethality using antibiotic concentrations either similar to (40) or higher than (41) those used previously. The disparate results obtained using diverse antibiotic concentrations and times of treatment emphasize the complexity of the lethal stress response (42).”

Similar destruction happens in mitochondria.  As I mentioned though, even if it didn’t happen in mitochondria, and only happened in bacteria, that destruction and those reactions are horrible things to do to a person’s microbiome.  It is, after all, part of us.

All of the people at the FDA who think that it’s okay not to strictly regulate drugs that disrupt the process of DNA replication and reproduction, and lead to the upregulation of genes and induction of the Fenton reaction, which leads to high levels of highly reactive ROS, should be fired.  I’ve learned enough biochem in the last 3 years to know that induction of the Fenton reaction in any part of the body is a really bad idea.  The scientists at the FDA should be able to figure this out.

 

flu tox get help you need banner click lisa

 

Petitioning the FDA – Comments Needed

Floxie friends, I have one thing that I am asking you to do today.  And please, if you decide to do it, do it sooner rather than later.  Please go to THIS LINK and make a comment about how fluoroquinolones have hurt you.  Let the FDA know that the current warning label for fluoroquinolones is insufficient.  Let the FDA know that their own findings of fluoroquinolone caused mitochondrial toxicity need to be noted on the warning labels of fluoroquinolones.

Again, here is the link for the citizens’ petition, filed with the FDA, where comments about how a fluoroquinolone hurt you can be made –

http://www.regulations.gov/#!docketDetail;D=FDA-2014-P-0856

If you do nothing else today, please, please make comments on this petition.

Thank you!

HERE is the petition that I am asking you to comment on.

The petition was submitted by Dr. Charles Bennett, M.D., Ph.D., M.P.P.  Dr. Bennett is with the Center for Medication Safety and Efficacy and the Southern Network on Adverse Reactions (SONAR).  The Quinolone Vigilance Foundation facilitated much of the work that went into the petition.  I thank both Dr. Bennett and his colleagues, and the Quinolone Vigilance Foundation for their work!

The petition is to add “Possible Mitochondrial Toxicity” to the Levaquin label.  In the Warnings and Precautions section of the Levaquin/levofloxacin label, it should say:

Possible Mitochondrial Toxicity

Fluoroquinolones, including Levaquin, may cause Mitochondrial Toxicity due, in part, to an insufficiency of ATP. Mitochondrial conditions that are due to an insufficiency of ATP include developmental disorders of the brain, optic neuropathy, neuropathic pain, hearing loss, muscle weakness, cardiomyopathy, and lactic acidosis. Neurodegenerative diseases, like Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis (ALS) have been associated with the loss of neurons due to oxidative stress generated by reactive oxygen species (ROS) related to Mitochondrial Toxicity. Peripheral neuropathy, hepatoxicity, glucose disturbances, and phototoxicity may result from Mitochondrial Toxicity.

That language, by the way, is directly from the FDA document, “Disabling Peripheral Neuropathy Associated with Systemic Fluoroquinolone Exposure.”  The folks at the FDA know that fluoroquinolones have been shown to be toxic to mitochondria, this petition is asking them to do something about it.

It is also requested in the petition that the following black box warning be added to the Levaquin/levofloxacin warning label:

WARNING: POSSIBLE MITOCHONDRIAL TOXICITY

Fluoroquinolones may cause Mitochondrial Toxicity. Mitochondrial Toxicity has been implicated in conditions such as peripheral neuropathy, hepatoxicity, glucose disturbances, phototoxicity, developmental disorders of the brain, optic neuropathy, neuropathic pain, hearing loss, muscle weakness, cardiomyopathy, lactic acidosis, Parkinson’s, Alzheimer’s, and amyotrophic lateral sclerosis (ALS).

Based on the severity of the effects of mitochondrial toxicity, it is being requested that:

  1. Levaquin label changes be made immediately.
  2. “Dear Doctor” letters be distributed regarding Levaquin label changes and requesting that physicians inform patients about the potential impact of “Possible Mitochondrial Toxicity” if they were previously prescribed this drug.

It is very important for all patients and medical professionals that this warning be added to the label of fluoroquinolones.  Please make your voice heard and support the petition with your comments.

THANK YOU!

 

flu tox get help you need banner click lisa

 

Same Disease, Different Symptoms: It’s all in the Mitochondria

Hormones Matter Logo

Fluoroquinolone toxicity affects everyone differently. Why? Because that’s how mitochondrial dysfunction works. WHY? Because mitochondrial produced ROS influence gene expression and we all have different genes. WHAT? Yup, ROS affect gene expression. Perhaps we should be more careful with our mitochondria. After all, our genes are at stake.

Same Disease, Different Symptoms:  It’s all in the Mitochondria

 

flu tox get help you need banner click lisa

Antioxidant Depletion by Fluoroquinolones

antioxidants

One of my favorite journal articles about the adverse effects of fluroquinolones is Oxidative Stress Induced by Fluoroquinolones on Treatment for Complicated Urinary Tract Infections in Indian Patients written by V. Talla and P.R. Veerareddy and published in the Journal of Young Pharmacists.  It’s a pretty damning article and it’s easy to read.  I highly recommend that you read it yourself.  Here is the link –

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249743/?report=printable

Even though it’s written at a level that most people can understand, there are a few terms that I’m assuming aren’t known by the average person reading this blog.  So, I have taken the main points from the study, as I see them, and explained them to the best of my ability.  Basically, I did the Google and Wiki look-ups so you don’t have to.

Here are the main points of the article:

1. “There is a significant and gradual elevation of lipid peroxide levels in patients on ciprofloxacin and levofloxacin dosage regimen but not with gatifloxacin.” What is lipid peroxide and do we want our levels to be high or low?  Wikipedia tells us that, “Lipid peroxidation refers to the oxidative degradation of lipids. It is the process in which free radicals “steal” electrons from the lipids in cell membranes, resulting in cell damage.”  (1)  Basically, lipid peroxidation is not something you want going on in your body.  You don’t want your lipids to be degraded via oxidation.  You don’t want cell damage.  Drugs that significantly increase levels of lipid peroxide are hurting you – at least on that level.


2. “There was substantial depletion in both SOD and glutathione levels particularly with ciprofloxacin.”  Superoxide dismutases (SODs) “are enzymes that catalyze the dismutation of superoxide (O2−) into oxygen and hydrogen peroxide. Thus, they are an important antioxidant defense in nearly all cells exposed to oxygen.” (2)  Additionally, “Within a cell, the superoxide dismutases (SODs) constitute the first line of defence against ROS.” (3)  SOD is “Present both inside and outside cell membranes, SOD is one of the body’s primary internal anti-oxidant defenses, and plays a critical role in reducing the oxidative stress implicated in atherosclerosis and other life-threatening diseases. Studies have shown that SOD can play a critical role in reducing internal inflammation and lessening pain associated with conditions such as arthritis.” (4) SODs are necessary for neutralizing the oxidative damage done by reactive oxygen species (ROS) (more on ROS below).

Glutathione is also depleted by fluoroquinolones.  Per Dr. Mark Hyman, Glutathione is “the most important molecule you need to stay healthy and prevent disease.”  (5)  Dr. Hyman notes that glutathione depletion “leaves you susceptible to unrestrained cell disintegration from oxidative stress, free radicals, infections and cancer.  And your liver gets overloaded and damaged, making it unable to do its job of detoxification.”  Glutathione is an extremely important antioxidant.

SOD and glutathione work together to neutralize oxidative damage done by ROS.  Here is a brief description of how SOD and glutathione work together:

SOD is responsible for catalyzing the conversion of superoxide to elemental oxygen and hydrogen peroxide. This transformation is called dismutation, hence the enzyme’s name. Although hydrogen peroxide is also a pro-oxidant compound, it is subsequently converted by the enzymes catalase and glutathione peroxidase to simple water and oxygen. (4)

Without the proper amount of SOD or glutathione in your body, ROS will wreak havoc on your system, causing oxidative stress and damage to every bodily system.   

fluoroquinolone-lawsuit-banner-trulaw

3. “On the 5th day of treatment, plasma antioxidant status decreased by 77.6%, 50.5%, 7.56% for ciprofloxacin, levofloxacin and gatifloxacin respectively.”  Antioxidants are molecules “that inhibit the oxidation of other molecules. Oxidation is a chemical reaction that transfers electrons or hydrogen from a substance to an oxidizing agent. Oxidation reactions can produce free radicals. In turn, these radicals can start chain reactions. When the chain reaction occurs in a cell, it can cause damage or death to the cell.” (6)  Oxidation is bad, antioxidants are good, cell death is bad – we want plasma antioxidant levels to be high, not low.  Decreasing plasma antioxidant status is bad for your health on a cellular level.

4. “In conclusion ciprofloxacin and levofloxacin induce more reactive oxygen species that lead to cell damage than gatifloxacin.”  The researchers also note that, “Several in vitro and in vivo study using animals revealed that fluoroquinolones induced oxidative stress by producing reactive oxygen species (ROS).”  ROS are described as follows:

Without oxygen, we could not exist. However, in the process of generating energy by “burning” nutrients with oxygen, certain “rogue” oxygen molecules are created as inevitable byproducts. Known as free radicals and reactive oxygen species, these unstable, highly reactive molecules play a role in cell signaling and other beneficial processes when they exist in benign concentrations.  But when their numbers climb, as may occur as a result of aging and other conditions, they may wreak havoc with other molecules with which they come into contact, such as DNA, proteins, and lipids. As such, these “pro-oxidant” molecules become especially toxic.

In fact, a prevailing theory of disease and aging states that the gradual accumulation of pro-oxidant molecules, and the harm they incur, is responsible for many of the adverse changes that eventually cause various diseases. These include cancer (possibly triggered by free radical-induced damage to cellular DNA) and inflammatory and degenerative diseases such as Alzheimer’s, arthritis, atherosclerosis, and diabetes. While scientists have not yet reached consensus on the topic, accumulated evidence overwhelmingly identifies increased oxidative stress with age as a source of damage to cellular structure and function.  (4)

Additionally, the wikipedia article on ROS does a nice job of explaining the damage that ROS can do – http://en.wikipedia.org/wiki/Reactive_oxygen_species

5. The authors of the study also note that, “The efforts of the endogenous antioxidant enzymes like SOD to remove the continuously generated free radicals initially increase due to an induction but later enzyme depletion occurs by 73.3% and 32.2% for ciprofloxacin and levofloxacin respectively, resulting in oxidative cell damage. Hence when the generation of reactive free radicals overwhelms the antioxidant defence, lipid peroxidation of the cell membrane occurs. This causes disturbances in cell integrity leading to cell damage/death. In the present study the repeated administration of CFX (ciprofloxacin) (recommended dosage regimen of CFX for UTI) resulted in increase free radical adduct generation by CYP450 mediated metabolism that cumulate and may result in increased ROS and substantial reduction in antioxidant defense.”

I think it’s a pretty damning article.  It’s easy to read and understand.  It doesn’t answer all questions about the damage done by fluoroquinolones, but it does a nice job at describing some of the issues that go on in the body when fluoroquinolones are ingested.  I suggest that you bring a copy to your next doctor’s appointment.

Sources:

  1. http://en.wikipedia.org/wiki/Lipid_peroxidation
  2. http://en.wikipedia.org/wiki/Superoxide_dismutase
  3. Alscher RGErturk NHeath LS., “Role of superoxide dismutases (SODs) in controlling oxidative stress in plants” Journal of Experimental Botany 2002 May; 53(372):1331-41. http://www.ncbi.nlm.nih.gov/pubmed/11997379
  4. Dale Keifer, “Superoxide Dismutase Boosting the Body’s Primary Antioxidant Defense” Life Extension Magazine.  June, 2006 http://www.lef.org/magazine/mag2006/jun2006_report_sod_01.htm
  5. Mark Hyman, MD, “Glutathione:  The Mother of All Antioxidants” 04/10/2010 http://www.huffingtonpost.com/dr-mark-hyman/glutathione-the-mother-of_b_530494.html
  6. http://en.wikipedia.org/wiki/Antioxidant

 

flu tox get help you need banner click lisa